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Today’s Roadmap

1 Probability Review
I Random variables and realizations
I Conditional probability and Bayes’ Rule
I Means, variances and other moments
I Conditional moments

2 Statistics Review
I The Law of Large Numbers
I The Central Limit Theorem
I Hypothesis Testing
I Example: Testing the means of two RVs

3 Linear Algebra Review (very basic)
I Matrix and vector notation
I Transposes and inverses
I Matrix multiplication
I Matrix “calculus”
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Probability Review
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Outcomes, Events and Sets

To discuss probability we first need a few basic definitions:

An outcome is something we can observe but may not know in advance

Example: For a coin flip, H (heads) is an outcome
Example: The wage of a randomly sampled worker

A sample space is a set of all possible outcomes

Example: For a coin flip, {H,T} is the sample space
Example: For two coin flips, {HH,HT ,TH,TT} is the sample space

An event is any subset of the sample space

Example: For two coin flips, {HH,TT} is the event “getting the same
side both times”

A probability is a function from S to [0, 1] such that
1 P(E ) ∈ [0, 1] for any event, E
2 P(S) = 1
3 P(A ∪ B) = P(A) + P(B) whenever A ∩ B = ∅
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Outcomes and Events as a Venn Diagram

A A ∩ B B

S

A and B are events in the sample space, S

The intersection, AB, is the purple part

The union, A ∪ B, would be everything that isn’t white
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Conditional Probability

The conditional probability of an event, A, given, B, is the probability
that A occurs if B is known to have occurred.

Example: If two dice are rolled and sum to 8, what is the probability at
least one dice was a 4?

How to calculate conditional probability?
I The new sample space is just B and the event of both A and B happening

is AB so a natural definition is:

P(A|B) =
P(A ∩ B)

P(B)

I Notice that we can do the symmetric thing for P(B|A) and rearrange to
get Bayes’ Rule:

P(A|B)P(B) = P(B|A)P(A)
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Conditional Probability in a Venn Diagram

A A ∩ B B

S

The probability of A is the relative area of A

But what if B definitely occurred?
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Conditional Probability in a Venn Diagram

A ∩ B B

The probability of A is STILL the relative area of A

But we only take into account the part of A “inside” B
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Example: election odds

Candidate Pr(wins primary) Pr(wins general) Pr(wins general|wins primary)
Biden .286 .167 .584
Buttigieg .048 .029 .604
Harris .111 .059 .531
Sanders .154 .083 .538
Warren .333 .182 .547

Paul T. Scott NYU Stern L2 - Math and Statistics Review Fall 2021 8 / 53



Independence

An important definition: A and B are independent if P(A|B) = P(A)
and vice versa

Intuitively, independence means that B contains no information about A

Example: Whether a coin lands heads or tails does not depend on the
outcome of any prior flip.

Is this concept obvious? Gambler’s Ruin: people observed a roulette
wheel turn up black several times and began to bet against black even
though each new spin did not depend on the outcome of the previous
spin!
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Random Variables

A random variable is any function from the sample space S to the real
numbers, R

Example: If rolling two dice, the sum is a random variable
Example: . . . so is the number than comes up on one die

We can easily extend the definition of probability to random variables:
I The probability a random variable X is equal to x is the probability of all

events so that X (E ) = x . Formally:

P(X = x) = P

 ⋃
E :X (E)=x

E


Example: If rolling two dice, probability of the sum being 12 is given by:

P(D1 + D2 = 12) = P(D1 = 6 ∩ D2 = 6) = 1/36

Example: If you measure 100 randomly selected men’s heights, the
average height is a random variable.
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Discrete versus Continuous Random Variables

Intuition for probability is usually discrete (dice rolls) but a lot of randomness
is best modeled as continuous (height or wages)...

For a continuous random variable X the probability that X = x is “0”
since any one outcome happens with vanishingly small probability

Instead we think about sets like P(a < X < b)

Define the Cumulative Distribution Function of X to be:

F (x) = P(X ≤ x)

The continuous analog of probability for single events is the Probability
Density Function:

f (x) =
d

dx
F (x)

I This is not the probability of observing x
I It can be bigger than 1!
I However, it acts like a probability in that it is a “weight”
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The Mean of a Random Variable

Often we do not care about RVs per se but about certain properties:

The Mean or Expectation of a random variable is the
probability-weighted average outcome (denoted by E (X ) or µX )

I For discrete RVs:
E (X ) =

∑
x

P(X = x) ∗ x

I For continuous RVs:

E (X ) =

∫
xf (x)dx

We can easily take the mean of functions of random variables:

E (g(X )) =
∑
x

P(X = x)g(x)
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Properties of Expectations

Mean of a constant is a constant:

E (a) = a

Linearity:

E (aX + bY ) = aE (X ) + bE (Y )

NOT A Property: Swapping expectations and functions!

E (g(X )) 6= g(E (X ))

Knowledge check: is it true that E (XY ) = E (X )E (Y )?
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Variance and Covariance

The Variance of a random variable is defined as follows:

Var(X ) = E
(

(X – E (X ))2
)

This is a measure of the dispersion of X
Also denoted by σ2

X

The Covariance of two random variables is defined as follows:

Cov(X ,Y ) = E ((X – E (X ))(Y – E (Y )))

Measure of the tendency of X and Y to move in the same direction
I If X and Y tend to be far from the mean at the same time then

Covariance has large magnitude
I If X and Y tend to be large at the same time then Cov will be positive
I If X tends to be large when Y is small then Cov will be negative
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More on Variance and Covariance

NB: The covariance and variance of random variables are two of the
most important and commonly seen concepts in econometrics! Learn
them!

Useful properties:

Cov(aX + bY ,Z ) = a× Cov(X ,Z ) + b × Cov(Y ,Z )

Cov(X ,X ) = Var(X )

Var(aX + bY ) = a2 × Var(X ) + b2 × Var(Y ) + 2ab × Cov(X ,Y )

Exercise you should have done before: Prove the above!
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Conditional Mean (or Conditional Expectation)

Conditional mean: expected value of RV, X , if event, A, is known

Example: Expected value of a dice roll, D, if we know that D ≥ 4

The Conditional Mean of a discrete random variable is given by:

E (X |A) =
∑
x

P(X = x |A) ∗ x

and analogously for continuous random variables.

Example: (From above):

E (D|D ≥ 4) = 4× 1

3
+ 5× 1

3
+ 6× 1

3
= 5

The conditional mean is also linear but treats known entities as constant

Example:
E (Y × X |Y = y) = y × E (X |Y = y)
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Conditional Variance

The Conditional Variance of a random variable is given by:

Var(X |A) = E
(

(X – E (X |A))2 |A
)

Conditional variance has the same properties as variance but also treats
constant as known:

Var(X × Y |Y = y) = y2 × Var(X |Y = y)

With two random variables, can define the Conditional Covariance:

Cov(X ,Y |E ) = E ((X – E (X |A))(Y – E (Y |A))|A)
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Conditional Variance: Real World Example

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●
●

40

50

60

70

80

6 7 8 9 10 11
Log(GDP per Capita)

Li
fe

 E
xp

ec
ta

nc
y Continent

●

●

●

●

●

Africa
Americas
Asia
Europe
Oceania

Income and Life Expectancy by Country

There’s clearly some upward correlation between income and health

But how does this relationship look within continents?
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Conditional Variance: Real World Example
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The variance in outcomes in Africa is huge while in Europe it’s small

If one only focused on Africa, there is barely any relationship visible
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Facts and Theorems about Conditional Moments

Key Concept: A mean or a variance is a number; the conditional mean
or conditional variance is a function!

Example Consider a dice roll D:
1 E(D) = 3.5
2 E(D|D ≥ d) is a function of little d!

Important fact: If X and Y are independent:

E (X |Y ) = E (X )

It should be easy to prove this yourself from the definition of the
conditional mean.
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Facts and Theorems about Conditional Moments, Cont’d

Key Theorem 1: The Law of Total Expectation:

E (E (X |A)) = E (X )

In words: The weighted average of conditional means of random variable
is just the unconditional mean

Example: Calculating the average SAT score, S , of a college student:
1 Calculate the mean across all students, E (S):

µSAT =
1

N
×

∑
EVERYONE

SATi

2 Calculate the mean at each university, E (S |U = u) and then take the
population-weighted mean at each university, E (E (S |U = u)):

µSAT = µSAT ,NYU × P(NYU) + µSAT ,Columbia × P(Columbia) + ...
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Facts and Theorems about Conditional Moments, Cont’d

Key Theorem 2: The Law of Total Variance.

Var(X ) = E (Var(X |A)) + Var (E (X |A))

I In words: The variance of X is the average variance of X at different
outcomes of A and the variance of the mean of X at different values of A

I Example: The variance in income across countries, X , is the average
variance of income within countries, Var(X |A) plus the variance of
average income between countries, E (X |A)

I Alert: Conditional moments are very important in econometrics
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Sequences of Random Variables and Limits

In addition to random variables we can define a sequence of random
variables, Xn as a sequence of functions from an underlying probability
space to R

Example: The sum of n dice rolls

Sequences in calculus have a sense of convergence

Random variables are more complicated because they are random.
There are three types of convergence:

1 Almost Sure Convergence (Not going to use this, just here for
completeness)

2 Convergence in Probability
3 Convergence in Distribution
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Almost Sure Convergence

Xn is said to converge almost surely to X if for any ε > 0

P
(

lim
n→∞

|Xn – X | < ε
)

= 1

If X is a constant (i.e., just a number), µ, then the probability of
drawing a sequence Xn so that lim

n→∞
Xn 6= µ goes to 0

Similar to standard definition: for any given sequence, eventually that
specific sequence will settle down.

Example: Let Xn be maximum value of dice roll for n throws of dice. Xn

converges almost surely to 6 since the probability of never rolling 6 goes
to zero
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Convergence in Probability

Xn is said to converge in probability to X (or we say Xn is consistent
for X ) if for any ε > 0

lim
n→∞

P (|Xn – X | > ε) = 0

If X is a constant (i.e., just a number), µ, then as n gets large the
probability that Xn 6= µ becomes 0

The difference between convergence almost surely and in probability is
subtle (and honestly not important for this course)

Key takeaway: for a random variable, even as N gets large, there can be
some probability that something crazy happens. Convergence concepts
are a mathematical way of saying this probability vanishes.
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Convergence in Distribution

A random variable Xn converges in distribution to X if the cdfs converge:

lim
n→∞

Fn(x) = F (x)

Intuition: as n gets large, Xn is still a random variable (rather than
converging to a number), and it behaves like X in terms of probabilities
of events

We will visualize this below when reviewing the Central Limit Theorem
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Statistics Review
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Basic Definitions

We start with a sample of data that consists of a series of observations

Each ob is a realization of a random variable from an underlying
distribution called the data generating process or the population

I If all observations come are independent and come from same distribution,
then data is said to be independently and identically distributed (iid)

I A Simple Random Sample is a set of independent draws from the same
distribution, and is guaranteed to yield iid data

A Statistic is any function from the data to R
A Parameter is a number that characterizes the population

Some notation:
I Index observations with a subscript: so Xi is i th observation
I Represent data as a random variable with a capital letter, X
I Represent a realization with a lower case letter, x

Paul T. Scott NYU Stern L2 - Math and Statistics Review Fall 2021 27 / 53



Statistics are random variables!

A random sample itself is a random variable!
I Why: Two different random samples have different numbers, and so are

different realizations from the same distribution
I Each observation is also a random variable

Example: If a roll a dice 5 times, ONE sample would be {H,H,T ,T ,H}
but another sample could be {H,T ,T ,H,T}.

This also means that statistics (functions of the sample) are random
variables as well

Example: The sample mean X̄ is a random variable before data is
observed (but a number after)
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An Example with Coin Flips

Consider a fair coin and labeling heads as 0 and tails as 1.

Calling the dice outcome, D:

E (D) = .5× 1 + .5× 0 = .5

Now consider an experiment of flipping the coin 5 times:
I For each sample, {D1, ...,D5}, calculate D̄
I Example 1: {H,H,T ,T ,H} implies D̄ = .4
I Example 2: {T ,H,T ,T ,H} implies D̄ = .6

For different samples, different values of D̄, so what is the distribution?
I For each possible value of D̄ need the probability of all possible flips

(events) that yield that value
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An Example with Coin Flips: Visualization
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An Example with Coin Flips: Changing Sample Size
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Sample Moments versus Population Moments

Many statistical models contain some parameter that we wish to
estimate

Examples: Mean of an RV, µ, of the correlation between X and Y , ρXY

Statistics that estimate parameters are called estimators or estimates
I The sample mean (or sample variance, etc.) is the mean of the sample.

It is an example of a statistic
I For a sample of data, X1, ...,XN the sample mean is given by,

X̄ =
1

N

N∑
i=1

Xi

I This is NOT the population mean, E (X ) (a parameter)
I We often denote an estimator with a “hat”: X̄ = µ̂.

Paul T. Scott NYU Stern L2 - Math and Statistics Review Fall 2021 32 / 53



How do we pick an estimator?

Statistics and estimates do not fall from the sky

We like or dislike different estimators based on desirable properties and
whether they work with our modeling assumptions

List of useful properties (we’ll see these again):
1 Unbiasedness: E (µ̂) = µ

2 Consistency: limN→∞ µ̂
p→ µ

3 Efficiency: Whether or not Var(µ̂X ) is large or small.

Goal of econometrics: find estimators that have as many of these properties
fulfilled as we can
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The Power of Large Samples

X̄ matters because it is a good predictor of µX
In general, we care about statistics that are informative about important
parameters of the population

Sample Variance 1
N–1

∑
i

(Xi – X̄ )2 ⇔ Population Variance

Sample Covariance 1
N–1

∑
i

(Xi – X̄ )(Yi – Ȳ )⇔ Population Covariance

Theorem: The Law of Large Numbers For a SRS, as the sample size,
N, becomes large, the sample mean, X̄ will converge in probability to
µX

I Some technical conditions are needed for formal proof – basically need
σ2
X <∞

I Stronger versions of this theorem exist, but above is good enough
I Corollary: for (most) functions:

1

N

N∑
i=1

f (Xi )→ E (f (X ))

The LLN is hugely important because it guarantees that sample
moments converge to population moments!
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The Central Limit Theorem

The LLN says that X̄ will eventually get close to µX , but how close?

Theorem: The Central Limit Theorem For a sequence of iid
variables, Xi , where E (X ) = µ and Var(X ) = σ2:

lim
n→∞

√
n × X̄ – µ

σ

dist.→ N (0, 1)

Says that for n large, sample means will be approximately normally
distributed NO MATTER HOW X is DISTIRBUTED

NB: The exercise is treating X̄ as a random variable, so it says that for
REPEATED draws of a sample of data, the distribution of the mean
across samples will look a certain way.
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Visualizing the CLT
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Visualizing the CLT
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Visualizing the CLT
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Interlude: The Normal Distribution...

Normal distribution is the most important in statistics.

Define the Standard Normal Distribution to be N (0, 1) and denote it
by Z . We use Φ for the cdf of Z and φ for the pdf.

Key Properties:
I Linearity: If X ∼ N (µX ,σ2

X ) and Y ∼ N (µY ,σ2
Y ) are both normal with

covariance σXY , then,

aX + bY ∼ N
(
aµX + bµY , a2σ2

X + b2σ2
Y + 2abσXY

)
NB: Any Normal RV has cdf Φ((x – µ)/σ) (called standardizing)

I Symmetry about the mean:

Φ
(x – µ

σ

)
= 1 – Φ

(
–
x – µ

σ

)
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... and its Cousins

A squared standard normal random variable, Z2 is called a χ2(1)
(chi-squared of degree 1) random variable

I The sum of q independent χ(1)2 RVs is a χ2(q) random variable. Called
“chi-squared with q degrees of freedom”

I Arises naturally when squaring things like sample means

If Z ∼ N (0, 1) is normal and V is χ2(q) then Z/
√
V /q is defined as

t-distributed random variable with q degrees of freedom.
I Arises naturally in stats whenever sample is drawn from a normal

distribution
I Limit as q →∞ is normal

If U follows a t-distribution then U2 follows an F -distribution
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Hypothesis Testing: Introduction

Often we are interested in making inference about a sample or samples.

Example 1: Is the mean income in two countries different?
Example 2: Is the mean of a sample greater than some number µ?

The central issue: data is noisy and random ⇒ two numbers will rarely
be exactly the same

Hypothesis Test: If we assume a specific hypothesis is true, then the
likeliness of the observed data is informative about the likeliness of the
hypothesis.

Intuition: If a coin is fair, then getting 50 heads in a row is very unlikely
⇒ the coin is probably not fair
Example: If a random variable is distributed standard normal Z then
observing a number greater 3 than would only happen with .14%
probability ⇒ RV is probably not standard normal.
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Hypothesis Testing: More Formally

Null Hypothesis: Denoted H0. A hypothesis the researcher assumes is
true (e.g., µX = 0)

Alternative Hypothesis: Denoted Ha. An alternative to the null (e.g.,
µX 6= 0)

Test Statistic: A function of the data that is distributed differently
between the null and alternative hypotheses.
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Hypothesis Testing: More Formally

α-Level Test: Rejecting the null hypothesis if the test statistic occurs
with less than α% probability under the null.

I α is the Type I error: α% of the time, a null will be incorrectly rejected
I Related concept is Type II error: the probability a significant result is

treated as null

In math notation: Given a test statistic, U, with realization u, a
two-sided α-level test will reject the null if P(U < u ∪ U > u|H0) > α

One-sided versus Two-sided tests: If we “know” that a parameter has
some restrictions (e.g., µX > 0) then we can may only test if u > U but
the idea of the test is the same
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An Example: Testing Means

Consider two independent samples, Xi and Yi , of income from different
countries and test if the mean income is the same.

Step 1: Write down the hypotheses:

H0 :µX = µY

Ha :µX 6= µY

Step 2: Construct a test statistic.
I From LLN and CLT: If n is large then X̄ is approximately normal.

Denoted X̄
a∼ N

(
µX ,σ2/n

)
I Same is true for Y and since Normal RVs are linear:

t =

(
X̄ – Ȳ

)
– (µX – µY )√(

σ2
X + σ2

Y

)
/n

I IF H0 true THEN t
a∼ N (0, 1)
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An Example: Testing Means (Cont’d)

Step 3: Choose a level α and determine critical values of the test

–2 –1.6 0 1.6 2
t

N (0, 1)

Step 4: Check if t lies outside of the critical region, if so reject the null
hypothesis.

Intuition: t should only be in the purple region 10% of the time if the null
is true. This is unlikely enough that we consider it evidence against the
null.

I For 10% test, cv is 1.65, for 5% tests, cv if 1.96
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On standard deviations and standard errors

Where does the “n” come from in the CLT?

It represents the fact that the variance of the estimator is shrinking as n
gets big

Standard error: the standard deviation of the estimator
I For a sample mean: σX̄ = σX /

√
N

I This relates the standard deviation and the standard error

Often times we don’t know σX so we have estimate it using:

s2
X =

1

N – 1

N∑
i=1

(Xi – X̄ )2

Technicality: Now we have an estimated parameter (sX in the
denominator, NOT σX )

I Technically need to use a t-distribution with n degrees of freedom, not a
normal

I Distinction vanishes as N gets big (and most data sets have large N)
I We will not dwell on this
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p-Values

A test-statistic carries a lot of information...

An alternative to doing a test is to report a p-value

p-value: Given the null hypothesis, what is the probability of drawing a
value of X̄ at least as far in the tails of the distribution as the observed
value of X̄

I Mathematically:

p = P
(
|X̄ – µX | > |X̄ data – µX |

∣∣H0

)
I In principle this depends on the distribution of X̄
I With the CLT approximation, for a two-sided p-value:

p ≈ 2Φ(–|t|)

p-values are the smallest possible α test that would reject the null
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Confidence Intervals

Another way to give us the information in a test is to construct a confidence
interval:

Confidence Interval: Given a sample mean, a α% CI is a set that
contains the population parameter with α% probability.

Idea:
1 Pick a random null hypothesis, µ0
2 Is this reject by a 1 – α-level test?
3 If NO, put it in the confidence interval
4 Do this for all possible values of µ0

In other words: a confidence interval is all possible hypotheses that we
could not reject at α% probability

In general, also depends on the distribution of X̄

With CLT approximation:

CIα = X̄ ± cvα × σX̄
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Recapping

What are the main ideas to remember going forward?
1 Statistics is about finding parameter estimates with desirable properties

I Estimates themselves are RVs
I Properties we like: not being wrong as often as possible

2 The tools of the trade boil down to the CLT and the LLN

3 Because of randomness, to do inference we need to do hypothesis
testing

I A Hypothesis Test tells us how likely a sample is given a parameter value
in the population

I Many ways to summarize the same info: t-statistic, p-value, CI
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Linear Algebra Review
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Basic Definitions

A vector in Rn is a column of numbers (x1, x2, ..., xn).

A matrix in Rn×m is m columns of length n vectors (so n is the number
of rows and m is the number of columns). We denote an element of a
matrix by mij for row i and column j :

M =

(
m11 m12

m21 m22

)
For an entity on which there are many pieces of data, we store the data
in a vector xi

Example: For the USA could have xUSA = (GDPUSA,PopulationUSA, ...)

For many entities we can store all the data in a data matrix, X .

Example: For two countries:

X =

(
GDPUSA PopulationUSA
GDPCanada PopulationCanada

)
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Matrix Multiplication

For two vectors of equal length define the dot product as,

v · w =
n∑

i=1

vi × wi

For two matrices, A and B of sizes n ×m and m × k define the matrix
product C = AB as the n × k matrix with entries cij =

∑m
l=1 ailblj

I Easy way to remember: (i , j)th element of product is dot product of i th

row and jth column of A and B respectively.
I Not all matrices can be multiplied: left matrix must have column length

equal to right matrix’s row length
I Multiplication is NOT commutative: AB 6= BA even if they both exist
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Transposes

Define the transpose of A as the matrix A′ with elements a′ij = aji
(reverse columns and rows)

A matrix is symmetric if A′ = A

Important Properties:
I The matrix B = A′A is always a square matrix
I The matrix B = A′A is always symmetric
I (A′)′ = A
I Multiplication Rule: (AB)′ = B ′A′

I Addition Rule: (A + B)′ = A′ + B ′
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Inverses

The Identity Matrix, I , is a matrix with 1s on the diagonal and 0s
elsewhere. Clearly AI = A.

Define the left inverse of A to be the matrix A–1 such that A–1A = I
I Can analogously define right inverse
I Right and left inverse will NOT be the same if A is not a square matrix
I Right and left inverse WILL be equal if A is square (then we just say

inverse)

Important Properties:
I Multiplication Rule: (AB)–1 = B–1A–1

I Tranpose Rule: (A′)–1 = (A–1)′

I Dot Product: v · w = v ′w
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Matrix Calculus

For a function f : Rn → Rm recall the definition of the derivative or
Jacobian of f :

Df =


∂f1
∂x1

. . . ∂fm
x1

...
∂f1
∂xn

. . . ∂fm
xn


We WON’T be doing anything too complicated! But we can define two
important functions given a vector x and a matrix A:

I For Ax , D(Ax) = A (as a line in 1-D calc)
I For x ′Ax , D(x ′Ax) = x ′(A + A′) (as a quadratic in 1-D calc)
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